福田の数学〜大阪大学2024年理系第4問〜回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第4問〜回転体の体積

問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
投稿日:2024.06.03

<関連動画>

【解答にミスあり概要欄】大学入試問題#322 慶應義塾大学(2021) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$-\displaystyle \frac{\pi}{2} \leqq \theta \leqq \displaystyle \frac{\pi}{2}$
$4\cos\displaystyle \frac{\theta}{2}(\cos\displaystyle \frac{\theta}{2}+\sin\displaystyle \frac{\theta}{2})$のとき
$\sin\theta$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

#電気通信大学2024#不定積分_53

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} e^x \sqrt{6-e^x} dx$を解け.

2024電気通信大学過去問題
この動画を見る 

立命館大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ

出典:立命館大学 過去問
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x^2} dx$

出典:2014年奈良教育大学
この動画を見る 

奈良女子大 三次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+mx^2+nx+1=0$は絶対値が1となる虚数解を持つ.
このとき整数(m,n)をすべて求めよ.

奈良女子大過去問
この動画を見る 
PAGE TOP