大学入試問題#542「どこでも対称性が流行」 九州大学(2023) #高次方程式 - 質問解決D.B.(データベース)

大学入試問題#542「どこでも対称性が流行」 九州大学(2023) #高次方程式

問題文全文(内容文):
$x^4-2x+3x^2-2x+1=0$を解け

出典:2023年九州大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: ますただ
問題文全文(内容文):
$x^4-2x+3x^2-2x+1=0$を解け

出典:2023年九州大学 入試問題
投稿日:2023.05.21

<関連動画>

重積分⑦-5【極座標による変数変換】(高専数学 微積II,数検1級対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D\\\ y \ dx \ dy$
$D:x^2+y^2\leqq 1,0\leqq y\leqq x$
この動画を見る 

福田のおもしろ数学136〜巨大な数の大小関係

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2023^{2024}$と$2024^{2023}$の大小を比較してください。
この動画を見る 

神戸大 三次方程式の解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$

出典:神戸大学 過去問
この動画を見る 

18愛知県教員採用試験(数学:6番 指数関数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
この動画を見る 

【高校数学】 数Ⅱ-161 関数の最大値・最小値⑥

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$f(x)=x^3-3x^2+2(0 \leqq x \leqq a)$の最大値と最小値、およびそのときのxの値を求めよう。
ただし、$a \gt 0$とする。
この動画を見る 
PAGE TOP