【高校受験対策】数学-図形25 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形25

問題文全文(内容文):
1辺の長さが$4cm$の正方形$ABCD$がある。同1・間2に答えなさい。

問1
右の図のように、点$P$が$A$を出発し、正方形$ABCD$の周上を、 毎秒$1cm$の速さで$B$、$C$を通って$D$まで移動する。
(1)(2)に 答えなさい。

(1)点$P$が$A$を出発してから6秒後の線分$AP$の長さを求めなさい。

(2) 点$P$が$CD$上にあり、四角形$ABCP$の面積が$10cm^2$となるのは、点$P$が$A$を出発してから何秒後か、求めなさい。


問2
下の図のように、正方形$ABCD$の外側に、正三角形$ABE$と$\angle CBF=90°$の直角三角形$BCF$をつくる。
辺$CF$の中点を$M$とし、$BF=4\sqrt{3}cm$であるとき、(1)・(2)に答えなさい。

(1)$△BDE$の面積を求めなさい
(2)線分$BM$と線分$DF$の交点を$Q$とするとき、$BQ:QM$を求めなさい。
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1辺の長さが$4cm$の正方形$ABCD$がある。同1・間2に答えなさい。

問1
右の図のように、点$P$が$A$を出発し、正方形$ABCD$の周上を、 毎秒$1cm$の速さで$B$、$C$を通って$D$まで移動する。
(1)(2)に 答えなさい。

(1)点$P$が$A$を出発してから6秒後の線分$AP$の長さを求めなさい。

(2) 点$P$が$CD$上にあり、四角形$ABCP$の面積が$10cm^2$となるのは、点$P$が$A$を出発してから何秒後か、求めなさい。


問2
下の図のように、正方形$ABCD$の外側に、正三角形$ABE$と$\angle CBF=90°$の直角三角形$BCF$をつくる。
辺$CF$の中点を$M$とし、$BF=4\sqrt{3}cm$であるとき、(1)・(2)に答えなさい。

(1)$△BDE$の面積を求めなさい
(2)線分$BM$と線分$DF$の交点を$Q$とするとき、$BQ:QM$を求めなさい。
投稿日:2019.02.01

<関連動画>

【みんな大好き】因数分解:東京電機~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#文字と式#高校入試過去問(数学)#東京電機大学高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京電機

因数分解せよ。
$x^8-16$
この動画を見る 

【実力アップ!】整数:東海高等学校~全国入試問題解法

アイキャッチ画像
単元: #中3数学#高校入試過去問(数学)#東海高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東海高等学校

▭部分を求めよ。
【3桁の正の整数】
各位の数の和が7である。
かつ
百の位の数と一の位の数を入れ替えると、
もとの整数より大きくなる。
このような整数は▭個ある。
この動画を見る 

【数学】中高一貫校問題集2幾何109:円:内接四角形:角度の応用2

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、円に内接する五角形ABCDEがある。AB=DE、∠DAE=32°、∠ADE=40°のとき、∠BCDの大きさを求めなさい。
この動画を見る 

【手を動かせ…!】因数分解:八雲学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を展開しなさい
(x+y+z)(x-y-z)
この動画を見る 

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 
PAGE TOP