11兵庫県教員採用試験(数学:1-4番 対数) - 質問解決D.B.(データベース)

11兵庫県教員採用試験(数学:1-4番 対数)

問題文全文(内容文):
1⃣(4)$x \geqq 2$ , $y \geqq \frac{1}{2}$ , $ xy=64$
$(log_2x)(log_2y)$
の最大値、最小値を求めよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(4)$x \geqq 2$ , $y \geqq \frac{1}{2}$ , $ xy=64$
$(log_2x)(log_2y)$
の最大値、最小値を求めよ。
投稿日:2020.09.26

<関連動画>

【数Ⅱ】対数関数:ええ!?マイナスがついていないのにマイナスになる数が存在するのかい!?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
マイナスがついていないのにマイナスの値になる数があります。
一体その正体とは…????

補足:底が省略されている場合は基底e(約2.7)が省略されています(数Ⅲで習いますが今回の説明にはあまり影響はありません)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題072〜上智大学2019年度理工学部第3問〜ガウス記号で定義された数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\alpha=\log_23$とし、自然数nに対して
$a_n=[n\alpha]$, $b_n=\left[\displaystyle\frac{n\alpha}{\alpha-1}\right]$
とする。ただし、実数xに対して[x]はxを超えない最大の整数を表す。
(1)$a_5=\boxed{\ \ ス\ \ }$である。
(2)$b_3=k$とおくと、不等式$\displaystyle\frac{3^{k+c}}{2^k} \leqq 1 \lt \frac{3^{k+1+c}}{2^{k+1}}$が整数$c=\boxed{\ \ セ\ \ }$で成り立ち、
$b_3=\boxed{\ \ ソ\ \ }$であることがわかる。
(3)$a_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ タ\ \ }$である。
(4)$b_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ チ\ \ }$である。
(5)$a_n \leqq$ 50を満たす自然数nの個数をsとし、$b_n \leqq$ 50を満たす自然数nの個数をtとする。このとき、s+t=$\boxed{\ \ ツ\ \ }$である。

2019上智大学理工学部過去問
この動画を見る 

福田のおもしろ数学274〜底が2の対数のガウスの和が2024を超えるのはいつか

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の式を満たす最小の整数 $n$ を求めて下さい。
$[\log_2{1}]+[\log_2{2}]+[\log_2{3}]+\cdots+[\log_2{n}]>2024$
$[x]$ は $x$ を超えない最大の整数を表します。
この動画を見る 

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 

福田のおもしろ数学159〜俳句はスパコンとAIで終了してしまうのか

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#場合の数#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
俳句はスパコンとAIに駆逐されるのか?
この動画を見る 
PAGE TOP