数学「大学入試良問集」【19−20 媒介変数のグラフと曲線の長さ、面積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−20 媒介変数のグラフと曲線の長さ、面積】を宇宙一わかりやすく

問題文全文(内容文):
$r$を正の定数とする。
$xy$平面上を時刻$t=0$から$t=\pi$まで運動する点$P(x,y)$の座標が$x=2r(t-\sin\ t\cos\ t),y=2r\ \sin^2t$であるとき、以下の問いに答えよ。
(1)
点$P$が描く曲線の概形を、$xy$平面上にかけ。

(2)
点$P$が時刻$t=0$から$t=\pi$までに動く道のり$S$は、
$S=\displaystyle \int_{0}^{\pi}\sqrt{ \left[ \dfrac{ dx }{ dt } \right]^2+\left[ \dfrac{ dy }{ dt } \right]^2 }\ dt$で与えられる。
このとき、$S$の値を求めよ。

(3)点$P$が描く曲線と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$r$を正の定数とする。
$xy$平面上を時刻$t=0$から$t=\pi$まで運動する点$P(x,y)$の座標が$x=2r(t-\sin\ t\cos\ t),y=2r\ \sin^2t$であるとき、以下の問いに答えよ。
(1)
点$P$が描く曲線の概形を、$xy$平面上にかけ。

(2)
点$P$が時刻$t=0$から$t=\pi$までに動く道のり$S$は、
$S=\displaystyle \int_{0}^{\pi}\sqrt{ \left[ \dfrac{ dx }{ dt } \right]^2+\left[ \dfrac{ dy }{ dt } \right]^2 }\ dt$で与えられる。
このとき、$S$の値を求めよ。

(3)点$P$が描く曲線と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体積を求めよ。
投稿日:2021.09.21

<関連動画>

大学入試問題#377「基本的な手筋」 琉球大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}|x|\sqrt{ 1-x^2 }\ dx$

出典:2015年琉球大学 入試問題
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

複素関数論⑨ 高専数学 複素積分*1(1)-(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
複素積分の定義を解説していきます.
この動画を見る 

【数Ⅲ】【積分とその応用】面積11 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$y=ax^2$と$y=\log x$はただ1点を共有し、その点におけるそれぞれの接線は一致するものとする。
(1)定数$a$の値と共有点の座標を求めよ。
(2)この2つの曲線と$x$軸で囲まれた部分の面積を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】面積2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
この動画を見る 
PAGE TOP