重積分⑨-2【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-2【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
目標$\int_0^\infty e^{-x^2}dx = \frac{\sqrt x}{2}$
準備$∬_{D_{a}}e^{-(x^2+y^2)}dxdy$
$D_a:x^2+y^2 \leqq a^2$
$x \geqq 0 , y \geqq 0$
投稿日:2020.11.16

<関連動画>

PAGE TOP