数学「大学入試良問集」【13−13 数列と関数と漸化式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−13 数列と関数と漸化式】を宇宙一わかりやすく

問題文全文(内容文):
各項が正である数列$\{a_n\}$を次の$(ⅰ)(ⅱ)$によって定める。
 $(ⅰ)a_1=1$
 $(ⅱ)$座標平面上の点$(0,-a_n)$から放物線の一部$C:y=x^2(x \geqq 0)$に接線$l_n$を引き接点を$A_n$とする。
点$A_n$において$l_n$と直交する直線$m_n$を引き、$y$軸との交点を$(0,3a_{n+1})$とする。

次の各問いに答えよ。
(1)$a_n$と$a_{n+1}$との関係式を求めよ。
(2)$a_n$を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各項が正である数列$\{a_n\}$を次の$(ⅰ)(ⅱ)$によって定める。
 $(ⅰ)a_1=1$
 $(ⅱ)$座標平面上の点$(0,-a_n)$から放物線の一部$C:y=x^2(x \geqq 0)$に接線$l_n$を引き接点を$A_n$とする。
点$A_n$において$l_n$と直交する直線$m_n$を引き、$y$軸との交点を$(0,3a_{n+1})$とする。

次の各問いに答えよ。
(1)$a_n$と$a_{n+1}$との関係式を求めよ。
(2)$a_n$を求めよ。
投稿日:2021.06.11

<関連動画>

福田の数学〜神戸大学2022年文系第1問〜場合分けされた放物線と直線の共有点と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。$x \geqq 0$のとき$f(x)=^2、x \lt 0$のとき$f(x)=-x^2$とし、
曲線$y=f(x)$をC、直線$y=2ax-1$を$l$とする。以下の問いに答えよ。
(1)Cとlの共有点の個数を求めよ。
(2)Cとlがちょうど2個の共有点をもつとする。Cとlで囲まれた図形の面積を求めよ。

2022神戸大学文系過去問
この動画を見る 

微分でもいいけど「あれ」を使えば一瞬です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。

早稲田大過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(1)〜交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)平行四辺形ABCDにおいて、辺CDの中点をMとし、直線ACと直線BMの交点をPとする。このとき、$\overrightarrow{AM}$, $\overrightarrow{AP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AD}$を用いて表すと
$\overrightarrow{AM}$=$\boxed{\ \ ア\ \ }$, $\overrightarrow{AP}$=$\boxed{\ \ イ\ \ }$

2023慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#721「落ち着いて計算」 早稲田商学部(2012) 積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
定数関数でない関数$f(x)$が
$f(x)=x^2-\displaystyle \int_{0}^{1}(f(t)+x)^2 dt$を満たすとき$f(x)$を求めよ。

出典:2012年早稲田大学商学部 入試問題
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP