福田の数学〜早稲田大学2024年人間科学部第1問(1)〜4次式の最小値 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年人間科学部第1問(1)〜4次式の最小値

問題文全文(内容文):
$\Large\boxed{1}$ (1)$x$が実数であるとき、$x(x+1)(x+2)(x+3)$ の最小値は$\boxed{\ \ ア\ \ }$である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$x$が実数であるとき、$x(x+1)(x+2)(x+3)$ の最小値は$\boxed{\ \ ア\ \ }$である。
投稿日:2024.04.30

<関連動画>

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は

$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$

である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。

2021上智大学文系過去問
この動画を見る 

大学入試問題#166 東京大学 改 (2022) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\cos\ x\ log(\cos\ x)dx$を求めよ。

出典:2022年東京大学 入試問題
この動画を見る 

#関西学院大学2012 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^m log$ $x$ $dx(m \neq -1)$

出典:2012年関西学院大学
この動画を見る 

大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
この動画を見る 
PAGE TOP