【数Ⅰ】【図形と計量】測量への応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】測量への応用3 ※問題文は概要欄

問題文全文(内容文):
∠C=90° である直角三角形ABCにおいて,∠A=θ, AB=k とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さをk,θを用いて表せ。(1) BC (2) AC (3) AD (4) CD (5) BD
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
∠C=90° である直角三角形ABCにおいて,∠A=θ, AB=k とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さをk,θを用いて表せ。(1) BC (2) AC (3) AD (4) CD (5) BD
投稿日:2024.11.11

<関連動画>

ただの分母の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
分母を有理化せよ.
$\dfrac{1}{\sqrt[3]{9}+\sqrt[3]{3}+2}$
この動画を見る 

図形と計量 正弦定理と余弦定理の応用、測量の考え方【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2地点P、Q間の距離を求めるために、1つの直線上にある3地点A、B、Cをとったら、$AB=400m、BC=100\sqrt3 m,\angle QAB=30°,\angle PBA=\angle QBC=75°,\angle PCB=45°$であった。P、Q間の距離を求めよ。
この動画を見る 

三角比この覚え方はどうでしょうか?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角比の覚え方紹介動画です
この動画を見る 

2020整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)^{2020}$を$x^2+1$で割った余りを求めよ
この動画を見る 

暗算でも出せるかな?早くも2022問題。x^2022+x^-2022の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る 
PAGE TOP