暗算でも出せるかな?早くも2022問題。x^2022+x^-2022の値 - 質問解決D.B.(データベース)

暗算でも出せるかな?早くも2022問題。x^2022+x^-2022の値

問題文全文(内容文):
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
投稿日:2021.09.09

<関連動画>

【6分でマスター!!】単項式と多項式の次数の求め方を解説!(係数と定数項についても)〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式と多項式の次数の求め方について解説します。
この動画を見る 

連立二元二次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + y = 1 \\
x^2y^2 + x^2 + y^2 = 31
\end{array}
\right.
\end{eqnarray}
この動画を見る 

2021近畿大(医)二次関数と格子点(隠れ2021年問題)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$

(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.

2021近畿大(医)過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 平面上の長さ3の線分AB上に、AP=t\ (0 \lt t \lt 3)を満たす点Pをとる。\hspace{72pt}\\
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。\alpha=\angle OAB,\ \beta=\angle OBA\\
とおく。\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)をtで表すと、\\
\tan\alpha=\boxed{\ \ あ\ \ },\ \tan\beta=\boxed{\ \ い\ \ },\ \tan(\alpha+\beta)=\boxed{\ \ う\ \ }\ である。\\
0 \lt \alpha+\beta \lt \frac{\pi}{2}であるようなtの範囲は\boxed{\ \ え\ \ }\ である。\\
tは\ \boxed{\ \ え\ \ }\ の範囲にあるとする。点A,\ Bから円Oに引いた接線の接点のうち、\\
PでないものをそれぞれQ,\ Rとすると、\angle QAB+\angle RBA \lt \piである。\\
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、\\
その交点をCとすると、円Oは三角形ABCの内接円である。\\
このとき、線分CQの長さをtで表すと\ \boxed{\ \ お\ \ }\ である。\\
また、tが\ \boxed{\ \ え\ \ }\ の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は\boxed{\ \ か\ \ }である。
\end{eqnarray}
この動画を見る 

【数Ⅰ】数と式:√(4+√7)の2重根号を外す!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
√(4+√7)の2重根号を外しなさい
この動画を見る 
PAGE TOP