数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく

問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。

(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。

(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
投稿日:2021.05.31

<関連動画>

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)次の条件によって定められる数列$\left\{a_n\right\}$の一般項を求めよ。
$a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)$

2021中央大学経済学部過去問
この動画を見る 

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

2025年度入試に出るかも?~答えが2025になる計算問題~

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2025年度入試に出るかも?
「答えが2025になる計算問題」について解説しています。
※問題文は動画内参照
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(3)〜等差中項と等比中項

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$x,y,z$は実数であり、$x\lt y$を満たすとする。

$3$つの数$3,x,y$がこの順に等差数列となり、

さらに$4$つの数$4,x,y,z$がこの順に

等差数列となるとき、

$x=\boxed{ウ}、\boxed{エ}、\boxed{オ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP