数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
投稿日:2021.06.05

<関連動画>

15和歌山県教員採用試験(数学:4番 帰納法)

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$n \gets IN$
$3^n$と$5n+2$の大小を比較せよ.
この動画を見る 

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とするとき、
$2^{3n-2}+3^n$は5の倍数であることを
数学的帰納法によって証明せよ。

会津大過去問
この動画を見る 

学習院大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#複素数平面#数列#平面上のベクトルと内積#漸化式#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$

$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$

$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$

$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$

$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$

$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$

$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$

$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
この動画を見る 
PAGE TOP