「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
投稿日:2020.12.24

<関連動画>

【高校数学】数Ⅰ-5 展開②(練習編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
この動画を見る 

式の値 名城大附属

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=2 \sqrt 2 - \sqrt 3$のとき
$x^4-22x^2=?$

名城大学附属高等学校
この動画を見る 

超絶良問 どっちがでかい?その差僅か0.0005

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
この動画を見る 

2024年問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
アイ \\[-3pt]
\underline{\times\phantom{0}イイ}\\[-3pt]
2024 \\[-3pt]

\end{array}
この動画を見る 

和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る 
PAGE TOP