問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
(1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$\sin^2\theta+\cos^2\theta=1$より
$\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
$\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
$\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
$\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
$=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$
(2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
$2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
$\cos^2\theta=\displaystyle \frac{1}{10}$
ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
$\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
$\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
$\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
(1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$\sin^2\theta+\cos^2\theta=1$より
$\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
$\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
$\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
$\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
$=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$
(2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
$2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
$\cos^2\theta=\displaystyle \frac{1}{10}$
ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
$\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
$\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
$\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
(1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$\sin^2\theta+\cos^2\theta=1$より
$\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
$\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
$\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
$\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
$=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$
(2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
$2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
$\cos^2\theta=\displaystyle \frac{1}{10}$
ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
$\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
$\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
$\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
(1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$\sin^2\theta+\cos^2\theta=1$より
$\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
$\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
$\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
$\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
$=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$
(2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
$1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
$2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
$\cos^2\theta=\displaystyle \frac{1}{10}$
ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
$\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
$\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
$\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
投稿日:2020.12.24