問題文全文(内容文):
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$
(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$
(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$
(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$
(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$
(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$
(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$
(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$
(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$
(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$
(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$
(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$
(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$
(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$
(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$
(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$
(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$
(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$
(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$
(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$
(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
投稿日:2020.12.30