問題文全文(内容文):
(1)
$\displaystyle \int e^x(f(x)+f'(x))dx=e^xf(x)+c$を示せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{4}}e^x\displaystyle \frac{\sqrt{ 1+\sin\ 2x }}{1+\cos\ 2x}\ dx$を計算せよ。
出典:2022年大阪教育大学 入試問題
(1)
$\displaystyle \int e^x(f(x)+f'(x))dx=e^xf(x)+c$を示せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{4}}e^x\displaystyle \frac{\sqrt{ 1+\sin\ 2x }}{1+\cos\ 2x}\ dx$を計算せよ。
出典:2022年大阪教育大学 入試問題
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師:
ますただ
問題文全文(内容文):
(1)
$\displaystyle \int e^x(f(x)+f'(x))dx=e^xf(x)+c$を示せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{4}}e^x\displaystyle \frac{\sqrt{ 1+\sin\ 2x }}{1+\cos\ 2x}\ dx$を計算せよ。
出典:2022年大阪教育大学 入試問題
(1)
$\displaystyle \int e^x(f(x)+f'(x))dx=e^xf(x)+c$を示せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{4}}e^x\displaystyle \frac{\sqrt{ 1+\sin\ 2x }}{1+\cos\ 2x}\ dx$を計算せよ。
出典:2022年大阪教育大学 入試問題
投稿日:2022.05.22