問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
投稿日:2015.08.01