問題文全文(内容文):
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。
(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。
出典:2002年京都大学 入試問題
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。
(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。
出典:2002年京都大学 入試問題
単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。
(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。
出典:2002年京都大学 入試問題
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。
(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。
出典:2002年京都大学 入試問題
投稿日:2022.02.13