平面上の曲線 - 質問解決D.B.(データベース)

平面上の曲線

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 

【数Ⅲ】式と曲線:極方程式の直線のなす角

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #サクシード#サクシード数学Ⅲ#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線
r(√3cosθ + sinθ)=4
r(√3cosθ - sinθ)=2
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る 

【数Ⅲ】式と曲線:二次曲線の極方程式

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。
(1)r=2/(√2+cosθ)
(2)r=9/(1+2cosθ)
(3)r=3(√1+cosθ)
(出典 数研出版4STEP数学Ⅲ)
この動画を見る 

【数Ⅲ】式と曲線:直線の極方程式

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標に関して、次の直線の極方程式を求めよ。
「点(1,π/2)を通り、始線とのなす角が2π/3である直線」
(出典)数研出版4STEP 数学Ⅲ

学校の問題集に載っている問題です。定期テスト対策にぜひ活用してみてくださいね。
この動画を見る 

【数Ⅲ】式と曲線:離心率に関する問題

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円x²/9+y²/4=1について、焦点F(√5,0)に対する準線の方程式をx=k(k>0)とする。kの値と、この楕円の離心率eの値を求めよ。
(出典 数研出版4STEP数学Ⅲより)

学校の問題集にも載っている問題です。定期テスト対策などでこの動画を活用してみてくださいね。

学校の問題集にも載っている問題の解法紹介です。定期テスト対策でこの動画を活用してくださいね!
この動画を見る 

【数Ⅲ】式と曲線:媒介変数表示で表された関数の式を求める問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式で表される点P(x,y)はどのような曲線を描くか。
x=(1-t²)/(1+t²) y=4t/(1+t²)
(出典 数研出版 4STEP数学Ⅲより)

学校の問題集にも載っている問題の解法紹介です。定期テスト対策でこの動画を活用してくださいね!
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}
この動画を見る 

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標平面において、tを媒介変数として\hspace{140pt}\\
x=e^t\cos t+e^\pi, y=e^t\sin t (0 \leqq t \leqq \pi)\\
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】双曲線関数について(関数として知っておこう!知識編)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
y=(e^x+e^(-x))/2と表される、カテナリー曲線の一種とは??
この動画を見る 

【数Ⅲ】極方程式をゼロからはじめましょう

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極方程式を基礎から解説します
この動画を見る 

【数Ⅲ】極座標をゼロから始めましょう

アイキャッチ画像
単元: #平面上の曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標を基礎から解説します
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。   (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}
この動画を見る 

【数Ⅲ】式と曲線:楕円の基礎

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 式と曲線】
楕円の基礎について解説をします。
この動画を見る 

【数Ⅲ】式と曲線:放物線の基礎

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線の基礎
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} a,bを定数とし、関数f(x)=x^2+ax+b とする。方程式f(x)=0の2つの解\alpha,\beta\\
が次式で与えられている。\\
\alpha=\frac{\sin\theta}{1+\cos\theta}, \beta=\frac{\sin\theta}{1-\cos\theta}\\
ここで\thetaは、0 \lt \theta \lt \piの定数である。次の問いに答えよ。\\
(1)a,bを\thetaを用いて表せ。\\
(2)\thetaが0 \lt \theta \piで変化するとき、放物線y=f(x)の頂点の軌跡を求めよ。\\
(3)\int_0^{2\sin\theta}f(x)dx=0 となる\thetaの値を全て求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。
この動画を見る 
PAGE TOP