【高校数学】 数Ⅱ-126 指数の拡張④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-126 指数の拡張④

問題文全文(内容文):
①$(a^\frac{1}{3}+b^\frac{1}{3})(a^\frac{2}{3}-a^\frac{1}{3}b^\frac{1}{3}+b^\frac{2}{3})$を計算しよう。

②$2^{x}+2^{-x}=3$のとき、$2^{2x}+2^{-2x}$の値を求めよう。

③$2^{x}+2^{-x}=3$のとき、$2^{3x}+2^{-3x}$の値を求めよう。
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(a^\frac{1}{3}+b^\frac{1}{3})(a^\frac{2}{3}-a^\frac{1}{3}b^\frac{1}{3}+b^\frac{2}{3})$を計算しよう。

②$2^{x}+2^{-x}=3$のとき、$2^{2x}+2^{-2x}$の値を求めよう。

③$2^{x}+2^{-x}=3$のとき、$2^{3x}+2^{-3x}$の値を求めよう。
投稿日:2015.09.12

<関連動画>

指数の計算

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{9^5 -6^6}{3^7 - 12^3}$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots①  g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$  
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$

$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$    ①$-f(x)$    ②$g(x)$    ③$-g(x)$

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$

(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

$\boxed{ネ}$の解答群
⓪$(\textrm{A})$   ①$(\textrm{B})$   ②$(\textrm{C})$   ③$(\textrm{D})$

2021共通テスト数学過去問
この動画を見る 

指数の方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^x=(10^{624}+25)^2-(10^{624}-25)^2$
$x$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(4)〜3次関数のグラフの回転と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。
関数$f(x)(x \geqq 0)$のグラフを、原点を中心に時計回りに
θ回転して得られる図形を$C(θ)$とする。
ただし、$0 \lt θ \lt \pi$とする。$C(θ)$と$x$軸の共有点が相異なる3点であるとき、
それらを$x$座標の小さい順に$P_θ,Q_θ,R_θ$とする。線分$Q_θR_θ$と$C(θ)$で
囲まれた部分の面積が$\frac{81}{32}$であるとき、$Q_θ$の$x$座標は$\boxed{\ \ エ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

秋田大(理)超基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\leqq 2において,y=2^{2n+2}-2^{x+2}$の最大値と最小値を求めよ.

秋田大(理)過去問
この動画を見る 
PAGE TOP