【高校数学】 数Ⅱ-143 常用対数③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-143 常用対数③

問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。

①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。

②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。

①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。

②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
投稿日:2015.10.02

<関連動画>

【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$

関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。

$a > 0$, $b > 0$ のとき、不等式

$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$

を証明せよ。
この動画を見る 

【高校数学】 数Ⅱ-137 対数関数③・方程式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$\log_3 x=2$

②$\log_{\frac{1}{4}}x=-3$

③$\log_{16}(x-2)=0.5$

④$\log_2(x-1)+\log_2(x+5)=4$

⑤$\log_{\frac{1}{9}}(x+7)=\log_{\frac{1}{3}}(6x-3)+1$
この動画を見る 

対数を用いて桁数を求める良問【数学 入試問題】【東京理科大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。

東京理科大過去問
この動画を見る 

見掛け倒しの方程式 ちょっと気をつけてね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2)^{\log_2(x^2+x-6)^2}=-2x+4$
この動画を見る 

一橋大 漸化式&対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
この動画を見る 
PAGE TOP