問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。
出典:2020年新潟大学 入試問題
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。
出典:2020年新潟大学 入試問題
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。
出典:2020年新潟大学 入試問題
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。
出典:2020年新潟大学 入試問題
投稿日:2021.12.01