【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄

問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
チャプター:

0:00 オープニング
0:05 解説
1:45 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
投稿日:2024.12.15

<関連動画>

大学入試問題#675「y軸回転はバームクーヘンから考えたくなる」久留米大学医学部(2010)

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=2x\sqrt{ 2-x^2 }$
$y=f(x)$のグラフと$x$軸とで囲まれる図形を$y$軸の周りに回転させてできる立体の体積を求めよ

出典:2010年久留米大学医学部 入試問題
この動画を見る 

福田の数学〜京都大学2025理系第1問(2−2)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-2)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{\dfrac{1-\cos x}{1+\cos x}}dx$

$2025$年京都大学理系過去問題
この動画を見る 

大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
この動画を見る 

#福島大学2024#定積分_31#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#364「計算が大変でした」 岩手大学2014 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x\ log(x+1)dx$

出典:2014年岩手大学 入試問題
この動画を見る 
PAGE TOP