福田の数学〜東京工業大学2024年理系第2問〜関数方程式と曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第2問〜関数方程式と曲線の長さ

問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
投稿日:2024.03.17

<関連動画>

東京大学の整数問題!5つの文字を求める!?どう解く?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
この動画を見る 

大学入試問題#629「計算ミスだけ注意」 横浜国立大学後期(2023) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=(log\ x)^2-\displaystyle \int_{1}^{e} f(t) dt$のとき
$f(x)$を求めよ

出典:2023年横浜国立大学 入試問題
この動画を見る 

大学入試問題#186 京都大学医学部(大正15年) 不定積分 たぶん難問

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{(x+1)\sqrt{ x^2-1 }}$を計算せよ。

出典:大正15年京都大学医学部 入試問題
この動画を見る 

学習院大 2次不等式の基本問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021学習院大学過去問題
$a,b$実数
$ax^2-3x+gt 0$
をみたすxの範囲が$a\lt x\lt a+1$
a,bの値
この動画を見る 

東邦大学医学部(2011) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{\sin\ x+\cos\ x} dx$

出典:2011年東邦大学医学部 入試問題
この動画を見る 
PAGE TOP