問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
投稿日:2024.03.11





