【数A】【整数の性質】素因数分解、素数について ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】素因数分解、素数について ※問題文は概要欄

問題文全文(内容文):
nは自然数とする。2310/nが素数となるnは何個あるか。

nは自然数とする。n²-14n+40が素数となるようなnをすべて求めよ。

次の問いに答えよ。
(1)(ア)5以上の素数を小さい方から順に10個あげよ。
(イ)(ア)であげた素数から予想できることについて,下の文章の□に当てはまる自然数のうち,最大のものを求めよ。ただし,□には同じ自然数が入るものとする。
5以上の素数は,□の倍数から1引いた数か,□の倍数に1足した数である。
(2)(1)(イ)の予想が正しいことを証明せよ。
チャプター:

0:00 問題1の解説
1:32 問題2の解説
3:51 問題3の解説
6:18 エンディング

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。2310/nが素数となるnは何個あるか。

nは自然数とする。n²-14n+40が素数となるようなnをすべて求めよ。

次の問いに答えよ。
(1)(ア)5以上の素数を小さい方から順に10個あげよ。
(イ)(ア)であげた素数から予想できることについて,下の文章の□に当てはまる自然数のうち,最大のものを求めよ。ただし,□には同じ自然数が入るものとする。
5以上の素数は,□の倍数から1引いた数か,□の倍数に1足した数である。
(2)(1)(イ)の予想が正しいことを証明せよ。
投稿日:2025.01.24

<関連動画>

整数問題 筑波大附属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
4ケタの数字3,4,5,6を並べ替えてできる4ケタの数をmとし、mの各位の数を逆順に並べてできる数をnとするとm+nは必ずpの倍数となる。
(ただしpは考えられる最大の整数)
p=?

筑波大学附属高等学校
この動画を見る 

北海道大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。

(1)
4回以内(4回を含む)に終わる確率は?

(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$

出典:2006年北海道大学 過去問
この動画を見る 

変な方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x・・・・}}}}=8$
この動画を見る 

奇数が分母の数列の和に突如あれが登場

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\Box$を求めよ.
$\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+・・・・・・=\dfrac{\Box}{4}$
この動画を見る 

福田の数学〜一橋大学2025文系第1問〜正の約数の個数と関数の最大値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

正の整数$n$に対し、$n$の正の約数の個数を

$d(n)$とする。

たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、

$d(6)=4$である。また、

$f(n)=\dfrac{d(n)}{\sqrt n}$

とする。

(1)$f(2025)$を求めよ。

(2)素数$p$と正の整数$k$の組で

$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。

(3)$f(n)$の最大値と、そのときの$n$を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP