【数Ⅰ】【図形と計量】面積応用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】面積応用4 ※問題文は概要欄

問題文全文(内容文):
次のような四角形$\rm ABCD$の面積を求めよ。
(1)円に内接し、$\rm AB=4,BC=3,CD=1,\angle B=60^{\circ}$
(2)円に内接し、$\rm AB=1,BC=2\sqrt2,CD=\sqrt2,\angle B=45^{\circ}$
チャプター:

0:00 オープニング
0:05 問題文(1)
0:18 アプローチ
0:57 解説(1)
4:00 問題文(2)
4:09 アプローチ
4:53 解説(2)
7:47 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような四角形$\rm ABCD$の面積を求めよ。
(1)円に内接し、$\rm AB=4,BC=3,CD=1,\angle B=60^{\circ}$
(2)円に内接し、$\rm AB=1,BC=2\sqrt2,CD=\sqrt2,\angle B=45^{\circ}$
投稿日:2025.02.09

<関連動画>

豪華すぎる生徒達 面積=❓

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCの面積=?
*図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

2次関数(放物線)折ることできる?

アイキャッチ画像
単元: #中3数学#数Ⅰ#2次関数#2次関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次関数(放物線)折ることできる?
この動画を見る 

【数学】グラフの平行移動がマイナスの理由

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
グラフの平行移動がマイナスの理由説明動画です
この動画を見る 

2023高校入試解説31問目 ルートが外れる問題 桃山学院

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{2023}{n}}$が自然数となるような自然数nをすべて求めよ。

2023桃山学院高等学校
この動画を見る 
PAGE TOP