【数B】【確率分布と統計的な推測】母集団と標本 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【確率分布と統計的な推測】母集団と標本 ※問題文は概要欄

問題文全文(内容文):
1,1,2,3,3の数字を記入した5枚のカードが袋の中にある。これを母集団とし、無作為に大きさ2の標本$X_{1},X_{2}$を抽出する。
(1) 母集団分布と母平均を求めよ。
(2) 標本平均$\bar{X}$の確率分布を、復元抽出、非復元抽出の各場合について求めよ。

1,2,3,4,5の数字を書いた5枚のカードが袋の中にある。これを母集団とし、書かれた数字が奇数であるという特性をAとするとき、次の問いに答えよ。
(1) 特性Aの母比率を求めよ。
(2) この母集団から、大きさ1の無作為標本を抽出するとき、特性Aの標本比率の確率分布を求めよ。
(3) この母集団から、大きさ2の無作為標本を抽出するとき、復元抽出,非復元抽出の各場合について、特性Aの標本比率の確率分布を求めよ。

1枚の硬貨をn回投げて、表の出る回数をXとするとき、$|\frac{X}{n}-\frac{1}{2}|\leq0.01$となる確率が0.95以上になるためには、nをどのくらい大きくすればよいか。 100未満を切り上げて答えよ。
チャプター:

0:00 1解説
3:41 2解説
6:23 3解説

単元: #確率分布と統計的な推測#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
1,1,2,3,3の数字を記入した5枚のカードが袋の中にある。これを母集団とし、無作為に大きさ2の標本$X_{1},X_{2}$を抽出する。
(1) 母集団分布と母平均を求めよ。
(2) 標本平均$\bar{X}$の確率分布を、復元抽出、非復元抽出の各場合について求めよ。

1,2,3,4,5の数字を書いた5枚のカードが袋の中にある。これを母集団とし、書かれた数字が奇数であるという特性をAとするとき、次の問いに答えよ。
(1) 特性Aの母比率を求めよ。
(2) この母集団から、大きさ1の無作為標本を抽出するとき、特性Aの標本比率の確率分布を求めよ。
(3) この母集団から、大きさ2の無作為標本を抽出するとき、復元抽出,非復元抽出の各場合について、特性Aの標本比率の確率分布を求めよ。

1枚の硬貨をn回投げて、表の出る回数をXとするとき、$|\frac{X}{n}-\frac{1}{2}|\leq0.01$となる確率が0.95以上になるためには、nをどのくらい大きくすればよいか。 100未満を切り上げて答えよ。
投稿日:2025.03.08

<関連動画>

【短時間でポイントチェック!!】確率変数の期待値・分散・標準偏差〔現役講師解説、数学〕

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
1から6までの番号をつけてある6枚のカードがある。
この中から2枚のカードを同時に引くとき、引いたカードの番号の大きい方を$X$とする。

①$X$の期待値を求めよ
②$X$の分散を求めよ
③$X$の標準偏差を求めよ
この動画を見る 

【数B】確率分布:母平均の推定、信頼区間とは??

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
母平均の推定、標準化と信頼度の関係は??信頼区間の公式までを説明します!
この動画を見る 

【高校数学】 数B-108 確率変数の和と積③

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
大中小3個のさいころを投げるとき,次の値を求めよう.

①出る目の和の期待値

②出る目の積の期待値

③出る目の和の分散
この動画を見る 

【高校数学】ここは大事!統計的な推測 2週間完成【⑥推定】

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
・ある試験を受けた高校生の中から、100人を任意に選んだところ、平均点は58.3点であった。母標準偏差を13.0点として、母平均を信頼度95%で推定せよ。
・ある町の有権者2500人を無作為に抽出して、A政党の支持者を調べたところ、625人であった。この町のA政党支持率を信頼度95%で推定せよ。
この動画を見る 

【高校数学】 数B-105 分散と標準偏差

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
確率変数$Y$の「確率分布が下の図で与えられるとき,
次の値を求めよう.

①$X$の分散

②$X$の標準偏差

$\begin{array}{c|ccc|c}
X & \ 0 & 1 & 2 & 計 \\
\hline
P & \dfrac{3}{6} & \dfrac{2}{6} & \dfrac{1}{6} & 1 & \\

\end{array}$
この動画を見る 
PAGE TOP