【数Ⅲ】【積分とその応用】面積8 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積8 ※問題文は概要欄

問題文全文(内容文):
曲線$x=\cos^3\theta,y=\sin^3\theta$で囲まれた部分の面積を求めよ。
チャプター:

0:00 オープニング
0:05 解説
5:10 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$x=\cos^3\theta,y=\sin^3\theta$で囲まれた部分の面積を求めよ。
投稿日:2025.03.18

<関連動画>

大学入試問題#96 横浜国立大学(2015) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ 3}\displaystyle \frac{dx}{e^x+5e^{-x}-2}$を求めよ。

出典:2015横浜国立大学 入試問題
この動画を見る 

福田のおもしろ数学187〜直円錐を平面で切った切り口の面積

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
底辺の半径1、高さ1の直円錐を図のような平面で切ったとき断面積はいくら?
この動画を見る 

大学入試問題#188 会津大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{1+log(log\ x)}{x}\ dx$を計算せよ。

出典:2021年会津大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle F(x)=\int_0^x(x+t)e^t~dt$

(2) $\displaystyle F(x)=\int_1^x(t-x)\log t~dt$
この動画を見る 
PAGE TOP