【数Ⅲ】【積分とその応用】面積4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積4 ※問題文は概要欄

問題文全文(内容文):
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
$x=\cos\theta$
$y=2\sin\theta~~(0\leqq \theta \leqq \pi)$
チャプター:

00:00 OP

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線と$x$軸で囲まれた部分の面積を求めよ。
$x=\cos\theta$
$y=2\sin\theta~~(0\leqq \theta \leqq \pi)$
投稿日:2025.03.18

<関連動画>

福田の数学〜上智大学2023年理工学部第2問〜逆関数の微分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 関数$f(x)$=$\sin x$ $\left(0≦x≦\frac{\pi}{2}\right)$の逆関数を$g(x)$とする。
(1)関数$g(x)$の定義域は$\boxed{\ \ え\ \ }$である。
(2)$y$=$g(x)$の$x$=$\frac{4}{5}$における接線の傾きは$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(3)$\displaystyle\int_0^{\frac{1}{2}}g(x)dx$=$\displaystyle\frac{\pi}{\boxed{\ \ キ\ \ }}$+$\boxed{\ \ ク\ \ }$+$\displaystyle\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\sqrt{\boxed{\ \ サ\ \ }}$である。
(4)$y$=$g(x)$のグラフと$x$=1および$x$軸で囲まれた図形を$x$軸のまわりに1回転させてできる立体の体積は$\displaystyle\frac{\pi^a}{\boxed{\ \ シ\ \ }}$+$\boxed{\ \ ス\ \ }\pi$ ただし$a$=$\boxed{\ \ セ\ \ }$である。
この動画を見る 

大学入試問題#146 東京工業大学(1966) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}xe^x\sin\ x\ dx$を計算せよ。

出典:1966年東京工業大学 入試問題
この動画を見る 

大学入試問題#116 岡山県立大学(2009) 定積分②

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{7}\displaystyle \frac{dx}{1+\sqrt[ 3 ]{ 1+x }}$を計算せよ。

出典:2009年岡山県立大学 入試問題
この動画を見る 

【高校数学】毎日積分35日目【バウムクーヘン積分】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、バウムクーヘン積分について解説します.
この動画を見る 

【数Ⅲ】三角関数の積分【半角の公式・積和の公式を使いこなせ】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\displaystyle \int \sin^{\Box}x dx,\displaystyle \int \cos^{\triangle}x dxの計算をせよ.$
$ \displaystyle \int \cos \Box x cos \triangle x dx,\displaystyle \int \sin \Box x \sin \triangle x dx,\displaystyle \int \sin \Box x cos \triangle x dxの計算をせよ.$
この動画を見る 
PAGE TOP