【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために) - 質問解決D.B.(データベース)

【数学】東大理科2022大問6ガチ解説!(1)の数え上げ方(抜けもれなく数えるために)

問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
チャプター:

00:00問題文の説明
00:40矢印で戻ってくるように考える
01:15型を作り、求め切る!

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、$\vec{v_k}$を
$\vec{v_k}=\left(\cos\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)$X_0$はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_{n-1}}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
投稿日:2022.12.28

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(7)〜直三角柱の切断面の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形の性質#微分法と積分法#学校別大学入試過去問解説(数学)#立体図形#立体切断#空間における垂直と平行と多面体(オイラーの法則)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(7)1辺の長さが$\sqrt2$の正三角形を底面とし、高さが4の直三角柱を考える。
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の
面積の最小値は$\boxed{\ \ シ\ \ }$である。ただし、直三角柱は底面と側面が垂直である三角柱
のことである。
条件① 切断面が直角三角形になる。
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第1問〜n^pの1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

自然数$n,p$に対して、$n^p$の$1$の位の数を

$f_p(n)$で表す。次の問いに答えよ。

(1)$f_2(n)$の取りうる値をすべて求めよ。

(2)$f_5(n)-f_1(n)$の値を求めよ。

(3)$f_{100}(n)$の取りうる値をすべて求めよ。

$2025$年早稲田大学社会科学部過去問題
この動画を見る 

基本対称式 静岡大2018

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は実数
$x+y+z=0$
$x^3+y^3+z^3=3$
$x^5+y^5+z^5=15$
のとき、
$x^2+y^2+z^2$の値を求めよ
この動画を見る 

大学入試問題#35 秋田大学(2020) 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
自然数$n$の各位の数の和を$S(n)$とする。
例:$S(2019)=2+0+1+9$

(1)
$n+S(n)=100$をみたす$n$を求めよ。

(2)
$S(n)=100$をみたす最小の$n$を求めよ。

出典:2020年秋田大学 入試問題
この動画を見る 

大学入試問題#743「単なる場合分け?」 早稲田大学政治経済学部(2003) #対数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,a \neq 1$とする。
このとき、$x$の不等式$log_a(x+2) \geq log_{a^2}(3x+16)$を解け

出典:2003年早稲田大学政治経済学部 入試問題
この動画を見る 
PAGE TOP