ルートが入っている等式の変形 2025早稲田本庄 - 質問解決D.B.(データベース)

ルートが入っている等式の変形  2025早稲田本庄

問題文全文(内容文):
(早稲田本庄2025)
$\sqrt{a+b}+\sqrt{a-b}=2$
のとき,$a$を$b$の式で表せ.
ただし,$0<b<a<2$とする.
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
(早稲田本庄2025)
$\sqrt{a+b}+\sqrt{a-b}=2$
のとき,$a$を$b$の式で表せ.
ただし,$0<b<a<2$とする.
投稿日:2025.02.10

<関連動画>

【「難しい」の原因を探す旅!】平方根:國學院大學久我山高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a=\dfrac{1}{4}$のとき,
$\dfrac{1-a}{\sqrt{a^2+2a+1}+\sqrt{9a^2-6a+1}}=\Box$
$\Box$を適当にうめなさい.

國學院大學久我山高等学校過去問
この動画を見る 

【数学】中3-22 ルートと展開のコラボ

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
この動画を見る 

【数学】便利すぎる!!日常でのルートの使い方

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
日常でのルートの使い方紹介動画です
この動画を見る 

【困難は分解せよ!】平方根:桐朋高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\dfrac{(\sqrt{14}-\sqrt6)(\sqrt7+\sqrt3)}{2}-(\sqrt2+1)^2$を計算せよ.

桐朋高校過去問
この動画を見る 

【初見では固まる…!】平方根:慶応義塾高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式を計算せよ。$
$\dfrac{1}{(1+\sqrt{2}+\sqrt{3})^2}+\dfrac{1}{(1+\sqrt{2}-\sqrt{3})^2}$
この動画を見る 
PAGE TOP