#1 数検準1級一次過去問 連立方程式 - 質問解決D.B.(データベース)

#1 数検準1級一次過去問 連立方程式

問題文全文(内容文):
$\boxed{1}$これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
3^{x+1}-2・3^y=-9 \\
\log_2 (x+1)-\log_2 (y+2)=-1
\end{array}
\right.
\end{eqnarray}$
単元: #連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#ユークリッド互除法と不定方程式・N進法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
3^{x+1}-2・3^y=-9 \\
\log_2 (x+1)-\log_2 (y+2)=-1
\end{array}
\right.
\end{eqnarray}$
投稿日:2021.01.22

<関連動画>

重積分⑩-3【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:1 \leqq x^2+y^2 \leqq 4$
$Z= \sqrt{x^2+y^2}$
D上の曲面Zの面積Sを求めよ。
この動画を見る 

重積分⑦-6 #153-(3)【極座標による変数変換】(高専数学 微積II,数検1級対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
$\iint_D \ \sqrt{x^2+y^2}\ dx \ dy$
$D:x^2+y^2\leqq 4,x^2+y^2\geqq 2x,x\geqq 0$
この動画を見る 

重積分⑦-1【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
変数変換(極座標)
$x=rcosθ$ $y=rsinθ$
$∬_D f(x,y)dxdy=∬_D f(rcosθ,rsinθ)rdrdθ$

(1)$∬_D \sqrt{x^2+y^2}dxdy$
$D : 4 \leqq x^2+y^2 \leqq 9$

(2)$∬_D sin\sqrt{x^2+y^2}dxdy$
$D : x^2+y^2 \leqq x^2$
この動画を見る 

重積分⑩-1【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$Z=\sqrt{a^2-x^2-y^2}$
$D:x^2+y^2=b^2$
(a>b>0)
D上の曲面Zの面積Sを求めよ。
この動画を見る 

練習問題37 数検1級1次 高専数学 教採 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x \leqq 2,x \leqq y \leqq 2$
$ \displaystyle \iint_D e^{y^2} dx \ dy$を計算せよ.
この動画を見る 
PAGE TOP