問題文全文(内容文):
$\boxed{1}-(3)$ $0\leqq x\leqq 2\pi$
$2\cos^2 x-3\sin x+a=0$が解をもつように$a$の値を求めよ.
(解)
$\boxed{1}-(3)$ $0\leqq x\leqq 2\pi$
$2\cos^2 x-3\sin x+a=0$が解をもつように$a$の値を求めよ.
(解)
単元:
#数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(3)$ $0\leqq x\leqq 2\pi$
$2\cos^2 x-3\sin x+a=0$が解をもつように$a$の値を求めよ.
(解)
$\boxed{1}-(3)$ $0\leqq x\leqq 2\pi$
$2\cos^2 x-3\sin x+a=0$が解をもつように$a$の値を求めよ.
(解)
投稿日:2021.02.14




