問題文全文(内容文):
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
投稿日:2021.04.11





