#13数検1級1次過去問 複素関数 - 質問解決D.B.(データベース)

#13数検1級1次過去問 複素関数

問題文全文(内容文):
$\boxed{2}$

$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$z=a+bi$とする.
$e^z=-i$を解け.ただし,$0\leqq b\lt 2\pi$とする.
投稿日:2021.05.01

<関連動画>

二乗して➖2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^{2}=-2のときx=?$
この動画を見る 

名古屋大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'92名古屋大学過去問題
$α=\frac{1-\sqrt7 i}{2},β=\frac{1+\sqrt7 i}{2}$
(1)次の等式を示せ。n自然数
$α^{n+1}+β^{n+1}=α^n+β^n-2(α^{n-1}+β^{n-1})$
(2)$α^n+β^n$が奇数であることを示せ。n自然数
この動画を見る 

16和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
複素数$z=x+yi$が
$1\leqq z+\dfrac{1}{z}\leqq 6$
を満たすとき,
$z$に存在範囲を複素数平面上に図示せよ.
$x,y$は実数とする.
この動画を見る 

室蘭工業大2020複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$z^2=2+\sqrt5 i$を解け.
②①の2つの解を$\alpha,\beta$とする.
複素平面上の$\alpha,\beta$を$A,B$とし$\triangle ABC$が正三角形になる点$C$の値
$\delta$を求めよ.

2020室蘭工業大過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+\frac 1{x^2} = \sqrt2$
$x^{2024} + \frac 1{x^{2024}} = ?$
この動画を見る 
PAGE TOP