#1微分方程式練習問題 (高専数学 数検1級) - 質問解決D.B.(データベース)

#1微分方程式練習問題 (高専数学 数検1級)

問題文全文(内容文):
$ x\dfrac{dy}{dx}=y(\log y-\log x+1)$
の一般解を求めよ.
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ x\dfrac{dy}{dx}=y(\log y-\log x+1)$
の一般解を求めよ.
投稿日:2021.05.14

<関連動画>

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
2018 $n ≡ 2$ (mod 1000)をみたす最小の自然数nを求めよ
この動画を見る 

重積分⑨-8【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
この動画を見る 

#64 #数検1級1次過去問「久しぶりに重積分やってみよー」 #重積分 #高専

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
領域$D$が次のように与えられている。
$D=\{(x,y)|0 \leq x \leq 1,0 \leq y \leq 1\}$
このとき、次の2重積分を計算せよ。
$\displaystyle \int\displaystyle \int_{D}|x-y|^{-\frac{2}{3}}dxdy$

出典:数検1級1次
この動画を見る 

#15 数検1級1次 過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る 

重積分⑦-1【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
変数変換(極座標)
$x=rcosθ$ $y=rsinθ$
$∬_D f(x,y)dxdy=∬_D f(rcosθ,rsinθ)rdrdθ$

(1)$∬_D \sqrt{x^2+y^2}dxdy$
$D : 4 \leqq x^2+y^2 \leqq 9$

(2)$∬_D sin\sqrt{x^2+y^2}dxdy$
$D : x^2+y^2 \leqq x^2$
この動画を見る 
PAGE TOP