問題文全文(内容文):
$\boxed{5}$任意の実数$s,t$に対して
$f(s+t)=f(s)f(t),f(1)\neq 0,f`(0)=a$である.
(1)$f(0)$
(2)任意の実数$x$に対して$f(x)\neq 0$を示せ.
(3)任意の実数$x$に対して$f`(x)=af(x)$を示せ.
(4)$f(x)$を求めよ.
$\boxed{5}$任意の実数$s,t$に対して
$f(s+t)=f(s)f(t),f(1)\neq 0,f`(0)=a$である.
(1)$f(0)$
(2)任意の実数$x$に対して$f(x)\neq 0$を示せ.
(3)任意の実数$x$に対して$f`(x)=af(x)$を示せ.
(4)$f(x)$を求めよ.
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$任意の実数$s,t$に対して
$f(s+t)=f(s)f(t),f(1)\neq 0,f`(0)=a$である.
(1)$f(0)$
(2)任意の実数$x$に対して$f(x)\neq 0$を示せ.
(3)任意の実数$x$に対して$f`(x)=af(x)$を示せ.
(4)$f(x)$を求めよ.
$\boxed{5}$任意の実数$s,t$に対して
$f(s+t)=f(s)f(t),f(1)\neq 0,f`(0)=a$である.
(1)$f(0)$
(2)任意の実数$x$に対して$f(x)\neq 0$を示せ.
(3)任意の実数$x$に対して$f`(x)=af(x)$を示せ.
(4)$f(x)$を求めよ.
投稿日:2021.06.07





