【受験対策】数学-図形8 - 質問解決D.B.(データベース)

【受験対策】数学-図形8

問題文全文(内容文):
①半径3cmである半球の表面積を求めなさい.

② 右の図1のおうぎ形について,周の長さが$(3\pi+24)cm$のとき,
このおうぎ形の面積を求めなさい.

③右の図2で,四角形$ABCD$は,$AD//BC,AD\lt BC$の台形で,
辺$CD$の中点を$E$とし,辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と$EA$の延長との交点を$G$とする.
$\triangle ABF$の面積が$15cm^2$のとき,
$ \triangle DFG$の面積を求めなさい.

図は動画内参照
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①半径3cmである半球の表面積を求めなさい.

② 右の図1のおうぎ形について,周の長さが$(3\pi+24)cm$のとき,
このおうぎ形の面積を求めなさい.

③右の図2で,四角形$ABCD$は,$AD//BC,AD\lt BC$の台形で,
辺$CD$の中点を$E$とし,辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と$EA$の延長との交点を$G$とする.
$\triangle ABF$の面積が$15cm^2$のとき,
$ \triangle DFG$の面積を求めなさい.

図は動画内参照
投稿日:2016.06.23

<関連動画>

福田の数学〜東京理科大学2024創域理工学部第1問(3)〜条件を満たす点の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を正の実数とする。座標平面上に点$\textrm{A}(a,1)$をとり、自然数$n=1,2,3,\cdots$に対して点$\textrm{P}_n(n,0)$をとる。集合$U$を次で定める。
$U=\{n|n$は自然数かつ2点$\textrm{A}, \textrm{P}_n$間の距離は$b$以下$\}$
(a) $a=2$とする。$b=1$のとき、$U$の要素の個数は?また、$b=\sqrt{3}$のとき、$U$の要素の個数は?
(b) $a=\dfrac72$とする。$b=\sqrt2$のとき、$U$の要素の個数は?また、$b=2\sqrt2$のとき、$U$の要素の個数は?
(c) $b=2$のとき、$U$の要素の個数が2個となる正の整数$a$は?また、$b=5$のとき、$U$の要素の個数が9個となる最小の正の整数$a$は?
この動画を見る 

ペアを作ろう!!A 大阪教育大学附属池田 洛南

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{1} \times \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} =$

大阪教育大学附属高等学校池田校舎
この動画を見る 

福田のおもしろ数学486〜1分チャレンジ!無理数の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x=\dfrac{\sqrt6+\sqrt2+\sqrt3+2}{\sqrt6-\sqrt2+\sqrt3-2},$

$y=\dfrac{\sqrt6+\sqrt2-\sqrt3-2}{\sqrt6-\sqrt2-\sqrt3+2}$

のとき$x^5+y^5$の値を求めて下さい。
    
この動画を見る 

【数Ⅰ】【図形と計量】空間の基本3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体$\rm ABCD$において、$\rm AB=BC=3,CA=2\sqrt5,BD=1,\angle ADB=\angle ADC=90^{\circ}$であるとき、次のものを求めよ。
(1)$\rm CD$の長さ (2)四面体$\rm ABCD$の体積 (3)$\triangle \rm ABC$の面積 (4)頂点$\rm D$から平面
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
この動画を見る 
PAGE TOP