問題文全文(内容文):
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.
①$EF=OB$であることを証明しなさい.
②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.
図は動画内を参照
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.
①$EF=OB$であることを証明しなさい.
②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.
図は動画内を参照
単元:
#数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.
①$EF=OB$であることを証明しなさい.
②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.
図は動画内を参照
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.
①$EF=OB$であることを証明しなさい.
②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.
図は動画内を参照
投稿日:2016.10.11





