問題文全文(内容文):
複素数平面上の原点$O$と異なる2点$A,B$の表す複素数を
それぞれ$\alpha,\beta$とする.
等式$\alpha ^ 2 - \alpha\beta + \beta ^ 2 = 0$が成り立つとき,
次の問いに答えよ.
①複素数$\dfrac{\beta}{\alpha}$を求めよ.
②$△OAB$はどのような三角形か.
複素数平面上の原点$O$と異なる2点$A,B$の表す複素数を
それぞれ$\alpha,\beta$とする.
等式$\alpha ^ 2 - \alpha\beta + \beta ^ 2 = 0$が成り立つとき,
次の問いに答えよ.
①複素数$\dfrac{\beta}{\alpha}$を求めよ.
②$△OAB$はどのような三角形か.
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
複素数平面上の原点$O$と異なる2点$A,B$の表す複素数を
それぞれ$\alpha,\beta$とする.
等式$\alpha ^ 2 - \alpha\beta + \beta ^ 2 = 0$が成り立つとき,
次の問いに答えよ.
①複素数$\dfrac{\beta}{\alpha}$を求めよ.
②$△OAB$はどのような三角形か.
複素数平面上の原点$O$と異なる2点$A,B$の表す複素数を
それぞれ$\alpha,\beta$とする.
等式$\alpha ^ 2 - \alpha\beta + \beta ^ 2 = 0$が成り立つとき,
次の問いに答えよ.
①複素数$\dfrac{\beta}{\alpha}$を求めよ.
②$△OAB$はどのような三角形か.
投稿日:2017.04.16





