【高校数学】数Ⅲ-43 曲線の媒介変数表示④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-43 曲線の媒介変数表示④

問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
投稿日:2017.06.24

<関連動画>

高専数学 微積I #243(1) 媒介変数曲線(x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$-1\leqq t\leqq 1$である.
曲線$x=t^3,y=t^2-1$と$x$軸で囲まれた
図形を$x$軸中心に回転した体積$V$を求めよ.
この動画を見る 

高専数学 微積I #227(3) 媒介変数表示関数の曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \pi$とする.
$x=\cos t+ \cos 2t$
$y=2\sin t- \sin 2t$
の曲線の長さ$L$を求めよ.
この動画を見る 

【数C】【平面上の曲線】中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。
この動画を見る 

高専数学 微積I #227(2) 媒介変数表示関数の曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \pi$とする.
$x=\cos t+t \sin t$
$y=\sin t-t \cos t$
の曲線の長さ$L$を求めよ.
この動画を見る 

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
この動画を見る 
PAGE TOP