問題文全文(内容文):
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。
極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。
平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。
中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨
図は動画内参照
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。
極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。
平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。
中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨
図は動画内参照
単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。
極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。
平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。
中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨
図は動画内参照
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。
極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。
平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。
中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨
図は動画内参照
投稿日:2017.06.27





