【テスト対策 中2】4章-6 - 質問解決D.B.(データベース)

【テスト対策 中2】4章-6

問題文全文(内容文):
①右の図Iで、点$E$は$∠BCD$の二等分線と$∠CDA$の二等分線との交点である。
このとき、$∠X$の大きさを求めなさい。

② 右の図Ⅱのように、1つの平面上に平行四辺形$ABCD$と長方形$BEFG$がある。
辺$AD$と辺$EF$ の交点を$H$とし、$\angle ABG = 49°、\angle DHE = 69°$のとき、
$∠BCD$の大きさを求めなさい。

図は動画内参照
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図Iで、点$E$は$∠BCD$の二等分線と$∠CDA$の二等分線との交点である。
このとき、$∠X$の大きさを求めなさい。

② 右の図Ⅱのように、1つの平面上に平行四辺形$ABCD$と長方形$BEFG$がある。
辺$AD$と辺$EF$ の交点を$H$とし、$\angle ABG = 49°、\angle DHE = 69°$のとき、
$∠BCD$の大きさを求めなさい。

図は動画内参照
投稿日:2017.08.01

<関連動画>

【エナドリ!】連立方程式:久留米大学附設高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{2x-3y}+\displaystyle \frac{2}{x+2y}=3 \\
\displaystyle \frac{3}{2x-3y}+\displaystyle \frac{2}{x+2y}=5
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
この動画を見る 

受験生応援!確率のエッセンスを凝縮した動画~全国入試問題解法 #Shorts #数学 #受験

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
5枚のカードが入っている箱から,カードを順に2枚取り出す.
1枚目を十の位,2枚目を一の位として,2桁の整数をつくるとき,
(1)偶数になる確率を求めよ.
(2)3の倍数になる確率を求めよ.

平安女学院高校過去問
この動画を見る 

【その本質を調べることも数学】連立方程式:滋賀県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#滋賀県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 滋賀県の高校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x - 3y = 1 \\
3x + 2y = 8
\end{array}
\right.
\end{eqnarray}$
連立方程式を解きなさい。
この動画を見る 

【高校受験対策】数学-死守17

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$6-2\times (-5)$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{7}{9}$を計算しなさい.

③$2(a+3b)-(a-4b)$を計算しなさい.

④$\sqrt8+\dfrac{6}{\sqrt2}$を計算しなさい.

⑤2次方程式$x^2+2x-15=0$を計算しなさい.

⑥赤,白,青の棒が各1本ずつ箱の中に入っている.
この3本の棒をよく混ぜて1本取り出し,色を確認してからもとにもどします.
このことを2回行うとき,確認した色が2回とも赤か,
2回とも白になる確率を求めなさい.

⑦相似な2つの立体$P,Q$があり,その表面積の比は$4:9$です.
立体$P$の体積が$8cm^3$のとき,立体$Q$の体積を求めなさい.

⑧図1のように,関数$y = ax^2$グラフ上に,$x$座標が-1となる点をとります.
また,$x$軸上の,座標が$ (1,0)$となる点を$B$とします.
直線$AB$の切片が2のとき,$a$の値を求めなさい.

⑨図2のように,直線$\ell$,2点$A,B$があります.
直線$\ell$上にあって,2点$A,B$から等しい距離にある点$P$を,
作図によって求めなさい.
なお,作図に用いた線は消さずに残しなさい.

図は動画内参照
この動画を見る 

3点が一直線上  明星

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
3点$(0,8),(1,t),(4,1-t)$が
一直線上にあるとき、
定数$t$の値を求めよ
この動画を見る 
PAGE TOP