【高校受験対策】数学-関数32 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数32

問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
投稿日:2018.01.13

<関連動画>

【頭を使うな!目で考えろ!】一次関数:和歌山県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)#和歌山県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 和歌山県の高校

図のように、 $2$点$A(2, 6), B(8, 2)$がある。

直線$y = ax$のグラフが
線分$AB$上の点を通る。

$a$の値の範囲は、 (ア)$ \leqq a \leqq $(イ)である。
※図は動画内参照
この動画を見る 

斬新な入試問題!! 福井県

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
2つの三角形が相似であるとき
△ABCについてどのようなことが言えるか全て答えよ
*図は動画内参照

福井県
この動画を見る 

中2数学「1次関数のグラフの書き方②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数のグラフの書き方②~

例題次のグラフを書きなさい。

(1)x = - 2(2) y = 3

(3) 2y = - 8(4) 2x - 5 = 3
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

【5分で分かる「よく出る」問題!】確率:山形県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#山形県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 山形県の公立高等学校

取り出した2個の玉の色が 異なる確率を求めなさい。

この箱から玉を1個取り出し、 それを箱に戻さずに、もう1個 取り出す。
どの玉が取り出されることも同様に確からしいものとする。
※図は動画内参照
この動画を見る 
PAGE TOP