"2025"を含む予想問題(3):入試予想問題~全国入試問題解法 - 質問解決D.B.(データベース)

"2025"を含む予想問題(3):入試予想問題~全国入試問題解法

問題文全文(内容文):
$(5-2\sqrt{6})^{2025}×(5+2\sqrt{6})^{2026}×(4-\sqrt{6})$
$を計算せよ。$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(5-2\sqrt{6})^{2025}×(5+2\sqrt{6})^{2026}×(4-\sqrt{6})$
$を計算せよ。$
投稿日:2024.12.28

<関連動画>

五角形の面積=❓ 芝浦工大柏  〇〇先生登場!!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
全体の面積=?
*図は動画内参照

芝浦工業大学柏高等学校
この動画を見る 

【短時間でマスター!!】三角比を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の基礎について解説します。
この動画を見る 

【三角比 総まとめ!】三角比で必要な知識を「全て」まとめて解説!〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角比で必要な知識を全てまとめました。
この動画を見る 

【#6】【因数分解100問】基礎から応用まで!(51)〜(60)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(51)$a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc$
(52)$ab(a+b)+bc(b+c)+ca(c+a)+3abc$
(53)$x^4-15x^2+9$
(54)$x^4+x^2y^2+y^4$
(55)$x^4+4y^4$
(56)$(a^2+a+1)(a^2-a+1)$
(57)$(x+1)(x-1)(x+3)(x-3)$
(58)$(x-3)^3$
(59)$(x+2)(x-2)(x-3)$
(60)$(2x^2+4xy+2y^2+2x+2y+1)(2x+2y+1)$
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$mを実数とし、関数$y=|x^2-5x+4|$のグラフをC、直線$y=mx$を$l$とする。
(1)グラフCと直線lの共有点の個数は
$\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }$のとき0個
$m=\boxed{\ \ エオ\ \ }$のとき1個
$m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ }$,または$m \gt \boxed{\ \ ケ\ \ }$のとき2個
$m=\boxed{\ \ コ\ \ }$のとき3個
$\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }$のとき4個
以下、グラフCと直線lの共有点の個数が3個の場合を考え、
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。

(2)3点P,Q,Rのx座標は、順に$\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}$である。

(3)グラフCと線分QRで囲まれた部分の面積は$\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}$である。

2022慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP