問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
投稿日:2018.03.08





