福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
投稿日:2025.03.06

<関連動画>

【少しでも上手く…!】連立方程式:慶応義塾高等学校~全国入試問題解法

単元: #連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
この動画を見る 

【未知なるものは…!】文章題:明治学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.

このときの$ \color{red}{所持金}$はいくらか?

明治学院高校過去問
この動画を見る 

複雑にみえる連立方程式 慶應義塾

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
51x + 49y = 1 \\
49x + 51y = 2
\end{array}
\right.
\end{eqnarray}
$
慶應義塾高等学校
この動画を見る 

【挑戦しよう!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$

の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$

慶應義塾高校過去問
この動画を見る 

【中2 P.53】連立方程式の計算特訓②

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

2.
$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3(y-1)+4 \\
x+5y=9
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=16 \\
\dfrac{x}{4}+\dfrac{y}{3}=\dfrac{1}{6}
\end{array}
\right.
\end{eqnarray}$


$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.4x-0.7y=1.1 \\
x+2y=14
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+y}{5}=2 \\
0.6x-0.2y=1
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$2x+5y=4y+7=4x+13y$
この動画を見る 
PAGE TOP