福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
投稿日:2025.05.16

<関連動画>

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通対策「数学で9割超える勉強法」についてお話しています。
この動画を見る 

17東京都教員採用試験(数学:3番 x軸回転体)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣$C_1:y=logx , C_2:y=\frac{1}{2}log(x≠2)$
$C_1$,$C_2$の交点x座標をa
(1)aの値
(2)$C_1$,$C_2$,x軸で囲まれた面積S
(3)$C_1$,$C_2$,x軸で囲まれた図形をx軸中心に回転した体積V
この動画を見る 

18神奈川県教員採用試験(数学:5番 式変形)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
5⃣
$x=3- \sqrt 2$
$x^4-6x^3+10x^2-13x+9$の値を求めよ。
この動画を見る 

福田のおもしろ数学354〜指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^x+3^x-4^x+6^x-9^x=1$ を満たす実数 $x$ をすべて求めて下さい。
この動画を見る 

指数の計算 敬愛学園  令和4年度 2022 入試問題100題解説92問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
この動画を見る 
PAGE TOP