場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】

問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
チャプター:

00:04 問題文
00:31 解答・解説
07:37 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
投稿日:2023.03.27

<関連動画>

青山学院大 関数の最大値・最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ

出典:2003年青山学院大学 過去問
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 平面上に3点O,A,Bがあり、\\
|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1\\
を満たしている。\\
\\
(1)|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}\\
\\
(2)\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}\\
\\
(3)実数s,tが\\
s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1\\
を満たしながら変化するとき、\\
\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }\\
で定まる点Pの存在する範囲の面積は\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}
である。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 

#会津大学2023#定積分_9#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin3x\cos2x$ $dx$

出典:2023年会津大学
この動画を見る 

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)Pを素数とし、kを0以上の整数とする。$2^{P-1}-1=P^k$を満たす
 P,Kの組をすべて求めよ。
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 
PAGE TOP