問題文全文(内容文):
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
ある凸多面体において、
三角形の面が$m$枚あり、
(他の形の面も含まれている可能性がある)
すべての頂点にはちょうど$4$枚の辺が集まって
いるとする。
このとき、$m$の最小値を求めて下さい。
投稿日:2025.05.23





